
React Patterns

© Edument 2020



Seminar overview
1. Setting the scene
2. Organising files
3. Component model
4. Project setup
5. Component communication
6. Dependencies
7. State management
8. Error handling
9. Testing

10. Wrapping up

1-1. Setting the scene

React �w!

Hello!

David
Waller

teacher

programmer

singing

boardgames

metal

Edumentmaths, Swedish,
programming

JS

https://blog.krawaller.se

david@krawaller.se

...in other words, exactly the kind of person you should be
wary of!

Dont listen to religion!
Instead look for motivated opinion...
...and then make your own for your project © Edument 2020

1-1-1

1-1-2

https://blog.krawaller.se/
mailto:david@krawaller.se


How many JavaScript frameworks are there?

https://dayssincelastjavascriptframework.com/

But, React is a very solid choice.

 >  + 

Go with React, it is super awesome!

 

But, be humble to React's light weight:

React Angular Ember frameworklibrary

React has very few opinions compared to other frameworks.

This is a danger, as we risk making implicit decisions.

Therefore:

 = more meetings

Make active decisions!

© Edument 2020

Q 1-1-3

A 1-1-4

1-1-5

1-1-6

1-1-7

1-1-8

1-1-9

1-1-10

https://dayssincelastjavascriptframework.com/


1-2. Organising files

Arranging the sock drawer

Have a top-level folder per concern

Each top-level concern is a separate API surface..
..and therefore have separate test suites
Refactoring one folder should not affect another..
..but changing a folder's API should

(If you're using Redux - more on that later - that should
probably be a top-level folder!)

© Edument 2020

1-2-1

1-2-2

1-2-3



Split concerns into separate toplevel folders

Are these good rules?

{ 
  "rules": { 
    "max-lines": ["error", 200], 
    "max-lines-per-function": ["error", { "max": 20 }], 
    "max-statements": ["error", 10] 
  } 
}

No. But yes!

The tradeoff:

a small function/file is easier to read..
..but means more indirection

Good discussion in Fun fun functions - Straight-line code over
functions

Files (and folders!) are cheap
Fuzzy file search is a game changer
Scrolling is expensive
Ergo, one thing (component!) per file © Edument 2020

1-2-4

Q 1-2-5

A 1-2-6

1-2-7

1-2-8

1-2-9

https://youtu.be/Bks59AaHe1c


Therefore: component folders!

Folder named from component
Component in file with same name
Reexport from index file
Subcomponents as MainComp.SubComp.jsx

Co-locate tests as MainComp.test.jsx

Co-locate all other component-specific stuff!

Co-locate everything to do with a component into a
dedicated folder, with one thing per file.

If you agree with the idea of component folders, consider
adding a stub command to quickly start a new component!

npm run stubComponent MyNewComponent

This can be done using Yeoman, or just a node file with some
JS copying templates!

© Edument 2020

1-2-10

1-2-11

1-2-12

1-2-13

1-2-14

https://yeoman.io/


Good component scaffolding brings two advantages:

Quick development
Solidifies setup and pattern choices

Have a component scaffolding setup!

1-3. Component model

What dress to wear

A�er choosing React, there are still lots more choices to be
made!

For example...

An ancient beer fridge:

const Clicker = React.createClass({ 
  getInitialState() { 
    return { count: 3 }; 
  }, 
  more() { 
    this.setState({ count: this.state.count + 1 }); 
  }, 
  render() { 
    return ( 
      <div> 
        <p>{this.state.count} bottles of beer on the wall</p> 
        <button onClick={this.more}>Buy more</button> 
      </div> 
    ); 
  } 
});

© Edument 2020

1-2-15

1-2-16

1-3-1

1-3-2



A classy beer fridge:

class Clicker extends React.Component { 
  state = { count: 3 }; 
  more = () => this.setState({ count: this.state.count + 1 }); 
  render() { 
    return ( 
      <div> 
        <p>{this.state.count} bottles of beer on the wall</p> 
        <button onClick={this.more}>Buy more</button> 
      </div> 
    ); 
  } 
}

Hook version:

const Clicker = () => { 
  const [count, setCount] = useState(3); 
  const more = setCount(count + 1); 
  return ( 
    <div> 
      <p>{count} bottles of beer on the wall</p> 
      <button onClick={more}>Buy more</button> 
    </div> 
  ); 
};

Which one is the best?

© Edument 2020

1-3-3

1-3-4

Q 1-3-5



Really? Why?

Logic sharing with classes:

const MyComponent = recompose( 
  withDetailsExpander(), 
  withLocation(), 
  withAuth() 
)(MyComponentInner);

Logic sharing with hooks:

const MyComponent = (props) => { 
  const { ... } = useDetailsExpander() 
  const { ... } = useLocation() 
  const { ... } = useAuth() 
  // ... the rest 
}

© Edument 2020

A 1-3-6

Q 1-3-7

A 1-3-8

1-3-9



This means:

Flatter render tree
Less props pollution
Less indirection

hooks > HoC:s

Also, with hooks, related logic is bunched together better.

But!

Classes are very well understood
Hooks takes some getting use to
Stale closure hook bugs can be hard to debug

Be humble to this!

Can you spot the bug?

const readSessions = useCallback(() => { 
  const sessions = getSessionList(meta.id); 
  setSessionInfo({ 
    sessions, 
    status: "loaded" 
  }); 
}, [setSessionInfo]);

const readSessions = useCallback(() => { 
  const sessions = getSessionList(meta.id); 
  setSessionInfo({ 
    sessions, 
    status: "loaded" 
  }); 
}, [setSessionInfo]); // <-- Demons live here (missing meta)

Always pay extra attention to the dependency array in code
review.

© Edument 2020

1-3-10

1-3-11

1-3-12

Q 1-3-13

A 1-3-14

1-3-15



Make a habit of checking the hooks section in the devtools:

And never use hooks without a seatbelt:

{ 
  "rules": { 
    "react-hooks/rules-of-hooks": "error", 
    "react-hooks/exhaustive-deps": "error" 
  } 
}

Skip classes for hooks, but come prepared and be humble

PS: custom hooks are great for code reuse, but also just for
splitting things up!

Imagine a fat component:

const Modal = props => { 
  const { title, content } = props; 
  const [isOpen, setIsOpen] = useState(false); 
  const open = useCallback(() => { 
    setIsOpen(true); 
  }, [setIsOpen]); 
  const close = useCallback(() => { 
    setIsOpen(false); 
  }, [setIsOpen]); 
  // render using isOpen, open, close, title, content 
};

© Edument 2020

1-3-16

1-3-17

1-3-18

1-3-19

1-3-20



We move the guts into a custom hook:

const useModal = () => { 
  const [isOpen, setIsOpen] = useState(false); 
  const open = useCallback(() => { 
    setIsOpen(true); 
  }, [setIsOpen]); 
  const close = useCallback(() => { 
    setIsOpen(false); 
  }, [setIsOpen]); 
  return [isOpen, open, close]; 
};

This can live in Modal.useModal.js in the same folder.

Now our component code is focused on the rendering:

const Modal = props => { 
  const { title, content } = props; 
  const [isOpen, open, close] = useModal(); 
  // render using isOpen, open, close, title, content 
};

A final note regarding state when you convert from class to
hooks:

this.state and this.setState usage becomes useState calls

this.nonRenderState becomes useRef calls

1-4. Project setup

Building the wardrobe

© Edument 2020

1-3-21

1-3-22

1-3-23



We're gonna cover:

a Babel

b NextJS

c StorybookJS

d CSS in JS

e Typing solution

First - Babel!

Waddya mean Babel, surely we just use Create React App?

Probably not. And if you do, invest time in the settings.

CRA means lock-in by design!

The gist;

Owning the project setup is hard and takes time..
..but it inevitably means less compromise and more
adaptability down the line

© Edument 2020

1-4-1

a 1-4-2

Q 1-4-3

A 1-4-4

1-4-5

https://babeljs.io/


Remember this advice?

Make active decisions!

It is of double importance for the build setup and related
infrastructure!

Therefore:

Have a home-rolled Babel/bundler setup with dedicated
maintenance

 

In my experience, the freedom that brings is worth a lot down the
line.

Next - Next!

We agree CRA is flaky, and yes we should own the setup, but
we came here hoping for some practical tips on the subject! Don't
you have any beyond do it yourself?

Fine: strongly consider using NextJS as a platform for your
app!

© Edument 2020

1-4-6

1-4-7

b 1-4-8

Q 1-4-9

A 1-4-10

https://nextjs.org/


NextJS gives you

Quick setup just like CRA
(that can hook into your Babel config)
dev setup with HMR
Server side rendering
Folder-based routing solution...
...with automatic code splitting

It used to be only a server-client package, but it can now
export to a static site.

Thus we can use it as a CRA replacement!

Take a close look at using NextJS as a foundation

Also - check out StorybookJS!

Isn't Storybook just a component gallery? We're not building
a UI library, we're building an app!

Wrong! The biggest value of Storybook is letting us iterate
quickly on components.

It is super useful in every React project, big and small (and tiny!),
no matter what we're building!

Every React project should have a Storybook!

Now - CSS in JS! © Edument 2020

1-4-11

1-4-12

1-4-13

c 1-4-14

Q 1-4-15

A 1-4-16

1-4-17

d 1-4-18

https://storybook.js.org/


With regular CSS, it is hard to say

what styles a component will get
which components a style will be applied to

This scales really badly and leads to specificity hell.

You should apply a technique to mitigate this!

This can be something like CSS Modules, or a full-blown
CSS in JS solution.

The important thing is that you don't use naked CSS (for a non-
trivial project).

Exactly which one you choose is less important!

Have a CSS solution!

Surely all that only applies to CSS n00bs? We understand
BEM so we don't need that stuff!

Good for you! :)

Finally - typing solution!

What, TypeScript?

Past me:

No, TS is just a safety blanket for backenders forced to write JS.
Once you truly grok JS you don't need it.

© Edument 2020

1-4-19

1-4-20

1-4-21

1-4-22

Q 1-4-23

A 1-4-24

e 1-4-25

Q 1-4-26

A 1-4-27



Current me:

Hells to the yes! Everyone should use TS.

What about Flow?

No.

But we use proptypes!

Not good enough.

Here's the sales pitch:

Setting up TS is super easy (nowadays)
Benefits even before adding any types
Can gradually introduce types
The React model plays really well with strong typing

Strongly consider TypeScript!

If you don't - avoid this pattern:

<MyComponent {...props}>

(in fact, avoid it anyway)

1-5. Component communication

App synapses

© Edument 2020

A 1-4-28

Q 1-4-29

A 1-4-30

Q 1-4-31

A 1-4-32

1-4-33

1-4-34

1-4-35

https://flow.org/
https://reactjs.org/docs/typechecking-with-proptypes.html


A React app is a pyramid of components:

Comp

Comp Comp

Comp Comp Comp

This makes component communication a central piece of the
puzzle.

parent

child

input output

Here's an Angular component (yuck):

@Component({ 
  selector: "combat" 
  // ...other view stuff 
}) 
export class CombatComponent { 
  @Input() arenaId: string; 
  @Output() outcome = new EventEmitter(); 
  // implementation 
}

Can you spot the inputs and outputs?

© Edument 2020

1-5-1

1-5-2

1-5-3



And when we use it:

<combat (outcome)="handleOutcome($event)" [arenaId]="aId" />

We can again identify inputs and outputs

Here we're using a React version:

<Combat onOutcome={handleOutcome} arenaId={aId} />

Distinguishing is still ok-ish since we use good names.

Otherwise it can be harder:

<Item data={item} select={register} />

Is select an input or output?

One possible solution - group outputs into a single prop!

interface BattleActions { 
  goToHistory: (step: number) => void; 
  goToBattleControls: () => void; 
  deleteCurrentSession: () => void; 
} 
 
type BattleProps = { 
  actions: BattleActions; // <-- all outputs grouped here 
  session: AlgolSession; 
  battle: AlgolBattle; 
}; 
 
export const Battle: FunctionComponent<BattleProps> = props => { 
  // ... 
};

Now the distinction is clear:

<Battle session={session} battle={battle} actions={actions}>

© Edument 2020

1-5-4

1-5-5

1-5-6

1-5-7

1-5-8



In a smart parent it is very common to be passing different
actions to different children, but the grouping pattern allows us to
safely cheat!

return ( 
  <Fragment> 
    <Breadcrumbs actions={actions} ... /> 
    <Board actions={actions} ... /> 
    <Controls actions={actions} ... /> 
  </Fragment> 
)

(if we're using a typing solution, that is)

If you don't like the grouping pattern, then consider
checking output names in the linter:

{ 
  "rules": { 
    "react/jsx-handler-names": "error" 
  } 
}

This enforces:

<MyComponent onChange={this.handleChange} />

Make it easy to identify outputs

1-6. Dependencies

Brain implants

© Edument 2020

1-5-9

1-5-10

1-5-11



Here's an Angular component again:

@Component({ 
  selector: "combat" 
  // ...other view stuff 
}) 
export class CombatComponent { 
  constructor(private battleService: BattleService) {} 
  @Input() arenaId: string; 
  @Output() outcome = new EventEmitter(); 
  // implementation 
}

Can you spot the dependency?

In React, which doesn't have a dependency injection system,
we are probably importing the dependency:

import { BattleService } from "../services"; 
 
const Combat = props => { 
  // implemented using BattleService 
};

In a Jest unit test we can mock the imported dependencies if
needed. But in a Storybook we can't! At least not easily.

This is one of many reasons for having a central dependency
strategy. Which we can accomplish via the Context API!

Context? Hold on. Isn't that just for library authors?

So people like me have said. For which I'm sorry!

I think of Context as a streamlined DI system (that blows
Angular's out of the water).

© Edument 2020

1-6-1

1-6-2

1-6-3

1-6-4

Q 1-6-5

A 1-6-6



If we have a typesystem we define an interface for our
dependencies:

interface Dependencies { 
  battleService: BattleService; 
  localStorage: LocalStorage; 
  // ... and more 
}

We make a dummy version with the same shape that only
logs to console:

const dummyDeps: Dependencies = { 
  battleService: dummyBattleService, 
  localStorage: dummyLocalStorage 
  // ...and more 
};

The dependency context is then created using the dummy as
default:

const DependencyContext = React.createContext(dummyDeps); 
DependencyContext.displayName = "DependencyContext";

In consumers we access the deps via useContext:

const CombatComponent = props => { 
  const { battleService } = useContext(DependencyContext); 
  // ...do stuff with battleService 
};

Btw, consuming contexts is butt ugly in class components.
Go hooks!

© Edument 2020

1-6-7

1-6-8

1-6-9

1-6-10

1-6-11



We put a provider at the top of the tree

const App = props => ( 
  <DependencyContext.Provider value={realDeps}> 
    <Main /> 
  </DependencyContext.Provider> 
);

Storybook scenarios will work out of the box since they'll use
the dummy dependencies.

For tests involving deps we wrap the component with a
provider of our mocks.

const result = ( 
  <DependencyContext.Provider value={mockDeps}> 
    <SomeComponent other={stuff} /> 
  </DependencyContext.Provider> 
);

An additional benefit of this pattern is to clearly identify and
catalog all dependencies, and just having that discussion o�en
means better organisation.

But, waitaminute. What do we mean by component
dependency? Would that be all imports that aren't child
components or hooks?

Pretty much!

non-component non-hook imports...
...that could mess up test and/or storybook scenario...
...or that we want test the usage of

But if 2nd and 3rd points are void, then just import the
damn thing.

If no one cares then no one cares! © Edument 2020

1-6-12

1-6-13

1-6-14

1-6-15

Q 1-6-16

A 1-6-17

1-6-18



(..although there's something satisfying about having all
imports from other top-level folders come via the context..)

Provide dependencies in an organised manner

1-7. State management

Nothing to say except use Redux, right?

It depends, of course:

Your app Needs
Redux

Doesn't need
Redux

Where is the line?

Past me:

If you know Redux you benefit even for small apps

Current me:

You very likely don't need Redux

© Edument 2020

1-6-19

1-6-20

Q 1-7-1

A 1-7-2

1-7-3

1-7-4



Complexity ≠ 

Redux shines if...

you have complex state
that is used in multiple places

Think hard before adopting Redux

So what are we supposed to do then?

A�er all, React is just a view layer thing?

React's state management - especially through hooks and
context - is more than enough for most apps!

© Edument 2020

1-7-5

Dan Abramov
@dan_abramov

You Might Not Need Redux medium.com/@dan_abramov/y…

359 10:31 PM - Sep 19, 2016

209 people are talking about this

You Might Not Need Redux
People often choose Redux before they need it.
“What if our app doesn’t scale without it?” Later,
developers frown at the indirection Redux…
medium.com

1-7-6

1-7-7

1-7-8

Q 1-7-9

A 1-7-10

https://twitter.com/dan_abramov
https://twitter.com/dan_abramov
https://twitter.com/dan_abramov/status/777983404914671616
https://t.co/3zBPrbhFeL
https://twitter.com/intent/like?tweet_id=777983404914671616
https://twitter.com/dan_abramov/status/777983404914671616
https://support.twitter.com/articles/20175256
https://twitter.com/dan_abramov/status/777983404914671616
https://t.co/3zBPrbhFeL


The gist:

keep local state local
if a cousin needs the same state, hoist to common ancestor
don't be afraid to propdrill a generation or two
if that gets out of hand, use context

For common ancestor state keepers, a good pattern is to
make state hooks:

useMyState = () => { 
  const [state, dispatch] = useReducer(reducer, initialState); 
  const actions = useMemo( 
    () => ({ 
      // ...obj with methods calling dispatch 
    }), 
    [dispatch] 
  ); 
  return [state, actions]; 
};

Consumed like this:

const SmartComponent = () => { 
  const [state, actions] = useMyState(); 
  // render passing (selected) state and actions to children 
};

Strategically place the state in the pyramid

This scales way better than past me could possibly imagine!

1-8. Error handling

Making things behave

Sometimes, there are bugs.

© Edument 2020

1-7-11

1-7-12

1-7-13

1-7-14

1-8-1



Here's what we'll cover:

a Render errors

b Non-render errors

c Error metadata

If an error is throw during render in React, we get a white
page of death.

We can catch them using Error boundaries!

Probably definitely at the top of the pyramid
maybe at other strategic points

There's no hook yet for this (boo!).

class ErrorBoundary extends React.Component { 
  state = { error: null } 
 
  static getDerivedStateFromError(error) { 
    return { error }; 
  } 
 
  render() { 
    return this.state.error 
      ? <ErrorDisplay error={this.state.error}> 
      : this.props.children 
  } 
}

The ErrorDisplay can just be an apologetic message, or a UI
to submit a bug report.

O�en it will also report to Sentry or a similar service.

© Edument 2020

1-8-2

a 1-8-3

1-8-4

1-8-5

1-8-6

https://sentry.io/


Employ Error Boundaries

But non-render errors need a different strategy!

These are typically

event handlers
useEffect calls

A powerful pattern is to have the top-level Error Boundary
provide a setter through a context:

  report = (error) => this.setState({ error }), 
  render() { 
    if (this.state.error) { 
      return <ErrorDisplay error={this.state.error}> 
    } 
    return ( 
      <ErrorContext.Provider value={this.report}> 
        { this.props.children } 
      </ErrorContext.Provider> 
    ) 
  }

Now careful children can use that in dangerous handlers
calls:

const CarefulComp = props => { 
  const report = useContext(ErrorContext); 
  const handler = () => { 
    try { 
      dangerousThing(); 
    } catch (e) { 
      report(e); 
    } 
  }; 
  // ... 
};

Bah. My silly teammates will forget to do that, or they can't
be bothered!

Truth! So we need to do some clever prep work.
© Edument 2020

1-8-7

b 1-8-8

1-8-9

1-8-10

Q 1-8-11

A 1-8-12



Probably you have a Button ui component? Do this:

const Button = props => { 
  const { onClick, text } = props; 
  const report = useContext(ErrorContext); 
  const handler = useCallback(e => { 
    try { 
      onClick(e); 
    } catch (error) { 
      report(error); 
    } 
  }); 
  return <button onClick={handler}>{text}</button>; 
};

For useEffect calls you can make an autoreporting version!

const useDangerousEffect = effect => { 
  const report = useContext(ErrorContext); 
  try { 
    useEffect(effect); 
  } catch (error) { 
    report(error); 
  } 
};

Provide an error reporter, and hook it into the boundary!

A nice pattern compatible with this is to decorate your
errors!

You don't need inheritance for this, just add stuff directly onto
the error!

© Edument 2020

1-8-13

1-8-14

1-8-15

c 1-8-16



For example, make the Button watermark the error with an

id:

const Button = props => { 
  const { onClick, text, buttonId } = props; 
  const report = useContext(ErrorContext); 
  const handler = useCallback(e => { 
    try { 
      onClick(e); 
    } catch (error) { 
      error.buttonId = buttonId; 
      report(error); 
    } 
  }); 
  return <button onClick={handler}>{text}</button>; 
};

This goes for non-react logic too. Provide good contexts to
your errors!

try { 
  dangerousThing(); 
} catch (err) { 
  err.meta = usefulStuffForDebugging; 
  throw err; 
}

Decorate your errors for debugging bliss

1-9. Testing

BDD, TDD, TBD?

First off - Jest is awesome.

You should have a very good reason for not using it.

So, for testing React we use Enzyme, right?

© Edument 2020

1-8-17

1-8-18

1-8-19

1-9-1

Q 1-9-2

https://jestjs.io/en/


Past me:

Of course! We shallow render to focus on the current unit.

Current me:

Hell no! The shallow renderer is very different from the actual
render cycle.

Also have to jump through hoops to make it work with hooks.

The React Testing library is pretty sweet!

But it might be enough to just use react-test-renderer directly.

Main point being: the more your tests resemble actual use,
the better.

But, that means rendering the full tree! What if my
component has unruly children?

You know, the problem that shallow rendering so elegantly solves?

If a child misbehaves, just mock it:

import { MyComponent } from "./MyComponent"; 
import { AnotherComponent } from "../AnotherComponent"; 
jest.mock("../AnotherComponent", () => ({ 
  AnotherComponent: () => <div /> 
})); 
 
// now test MyComponent without AnotherComponent messing things up

Jest mocking is a game changer.

© Edument 2020

A 1-9-3

A 1-9-4

1-9-5

1-9-6

Q 1-9-7

A 1-9-8

https://testing-library.com/docs/react-testing-library/intro


On the same subject - is this a good Redux test?

describe('the Notification reducer', () => { 
  test('handles addNotification correctly', () => { 
    const initialState = { ... } 
    const action = { ... } 
    const result = notificationReducer(initialState, action) 
    expect(result).toMatchSomeExpectation() 
  }) 
})

Nope!

Fake state (and action), risk testing nonexisting scenarios
Testing implementation detail (the app never calls the
reducer)

Here's a better version:

describe('the Notification reducer', () => { 
  test('handles addNotification correctly', () => { 
    const store = newTestStore() 
    store.dispatch(someAction()) // These two actions are just... 
    store.dispatch(anotherAction()) // ...to build initial state 
    store.dispatch(addNotification({ ... })) 
    const result = store.getState() 
    expect(result).toMatchSomeExpectation() 
  }) 
})

The API surface of the Redux layer is the store, so that's what
we should test!

Have your tests match reality as closely as possible.

© Edument 2020

Q 1-9-9

A 1-9-10

1-9-11

1-9-12

1-9-13



So. Snapshot testing.

Isn't this dumb?

Past me:

Yes, very.

Current me:

Nope! Same thing as checking stuff in the output manually, only
way easier and covers more.

Also developers must actively update snapshots, and render
changes shows in git diff.

You now how Dan Abramov is always right, right?

describe("the GameList component", () => { 
  test("renderes full list correctly", () => { 
    const output = ReactTestRenderer.create( 
      <GameList list={allGames} /> 
    ).toJSON(); 
    expect(output).toMatchSnapshot(); 
  }); 
  test("renders ok with empty list", () => { 
    const output = ReactTestRenderer.create(<GameList list={[]} />).toJSON();
    expect(output).toMatchSnapshot(); 
  }); 
});

© Edument 2020

1-9-14

Q 1-9-15

A 1-9-16

A 1-9-17

Q 1-9-18

1-9-19

Dan Abramov
@dan_abramov

Unpopular opinion: component unit testing is overrated.

324 9:43 PM - Jul 24, 2016

155 people are talking about this

https://twitter.com/dan_abramov
https://twitter.com/dan_abramov
https://twitter.com/dan_abramov/status/757315414284201985
https://twitter.com/intent/like?tweet_id=757315414284201985
https://twitter.com/dan_abramov/status/757315414284201985
https://support.twitter.com/articles/20175256
https://twitter.com/dan_abramov/status/757315414284201985


And remember, domain logic should be a separate top-level
concern and not live in the component anyway.

Use snapshot testing, and maybe nothing else!

1-10. Wrapping up

http://edument.se

Code EduReact for 30% off our React courses

david@krawaller.se

Don't be a stranger!

❤  

We ❤   feedback!

https://edument.typeform.com/to/FKWQbU

© Edument 2020

1-9-20

1-9-21

1-10-2

1-10-3

1-10-4

http://edument.se/
mailto:david@krawaller.se
https://edument.typeform.com/to/FKWQbU


External links
1-2-7 Fun fun functions - Straight-line code over functions: https://youtu.be/Bks59AaHe1c

1-2-14 Yeoman: https://yeoman.io/

1-4-2 Babel: https://babeljs.io/

1-4-10 NextJS: https://nextjs.org/

1-4-14 StorybookJS: https://storybook.js.org/

1-4-29 Flow: https://flow.org/

1-4-31 proptypes: https://reactjs.org/docs/typechecking-with-proptypes.html

1-7-5 September 19, 2016: https://twitter.com/dan_abramov/status/777983404914671616?

ref_src=twsrc%5Etfw

1-8-6 Sentry: https://sentry.io/

1-9-1 Jest: https://jestjs.io/en/

1-9-5 React Testing library: https://testing-library.com/docs/react-testing-library/intro

1-9-19 July 24, 2016: https://twitter.com/dan_abramov/status/757315414284201985?ref_src=twsrc%5Etfw

© Edument 2020

https://youtu.be/Bks59AaHe1c
https://yeoman.io/
https://babeljs.io/
https://nextjs.org/
https://storybook.js.org/
https://flow.org/
https://reactjs.org/docs/typechecking-with-proptypes.html
https://twitter.com/dan_abramov/status/777983404914671616?ref_src=twsrc%5Etfw
https://sentry.io/
https://jestjs.io/en/
https://testing-library.com/docs/react-testing-library/intro
https://twitter.com/dan_abramov/status/757315414284201985?ref_src=twsrc%5Etfw

