

Dimitrios Platis

- Grew up in Rodos, Greece
- Software Engineer @ Cellink, Gothenburg
- Course responsible @ DIT112, GU
- Interests:
 - Embedded systems
 - Software Architecture
 - API Design
 - Open source software & hardware
 - Robots, Portable gadgets, IoT
 - o 3D printing
- Blog: https://platis.solutions/blog

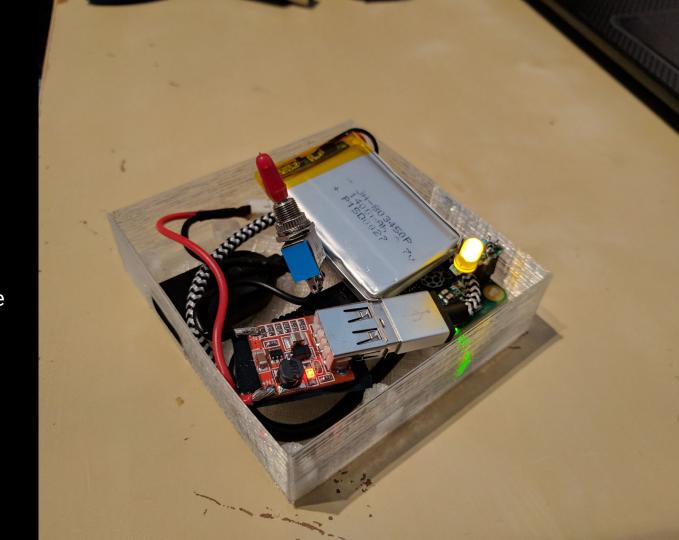
What is it?

- Portable device to encrypt your removable media
- Easy to use
- Plug & play
- Secure*

* To the extent a non-audited project using hobby-grade components can be

How to use

- 1. Turn on
- 2. Wait until LED is on
- 3. Plug in flash-drive
- 4. Wait until LED stops blinking
- 5. ??????
- 6. Profit (your drive is encrypted)



Why did I make it?

- "Dumbed down" encryption for everyone
- Should be cheap
- OS-agnostic
- Should be able to carry in pocket
- Inspired by encryptable SD card from Zifra
 - Discovered them during <u>Foss-North 2017</u>
- Wanted to learn more about practical cryptography

What is it made of?

- Raspberry Pi Zero
- 3D printed case
- DC step-up module (3.3V to 5V)
- Micro-USB OTG cable
- 1400mAh Li-Po battery
- On/Off switch
- 5mm LED
- 220Ω resistor

Crypto 101: Symmetric encryption

Overview

- Same secret (e.g. mnemonic password) used to both encrypt and decrypt information
- Must be securely stored

Advantages

Simple, effective & fast

Disadvantages

- Has to be shared securely for a different party to decrypt
- One cannot (plausibly) deny the ability to decrypt data, e.g.: if someone puts a gun on your head and you know the secret, you may be coerced to give it up)

Crypto 101: Asymmetric encryption

Overview

- Two keys, one for decryption ("secret key") and one for encryption ("public key")
- Only the "secret key" must be securely stored

Advantages

- No need to share secrets in order to decrypt information
- Can plausibly deny the ability to decrypt information since the secret key does not have to be in your possession (e.g. can be controlled by your employer)

Disadvantages

Slow & inefficient especially for (large) files

Best of all worst of none

- Master Ken

- 1. Encrypt fast without having to share secrets
- 2. Produce a random secret
- 3. Symmetrically encrypt the data
- 4. Asymmetrically encrypt the secret
- Share the asymmetrically encrypted key and symmetrically encrypted data (possibly over unsecured channels)
- 6. Decrypt the secret
- 7. Use decrypted secret to decrypt data

- Cryptopuck encryption

- Automount flash drive using <u>udiskie</u>
- Get a callback when new drive is mounted via <u>inotify</u>
- Generate random 32-bit secret using /dev/hwrng which will be used to AES-256 encrypt the drive
- Use public key on flash drive to RSA encrypt (according to PKCS#1 OAEP) the secret and save it on the drive
- 5. Recursively encrypt (AES CBC mode) all files individually
 - Avoid zipping everything and then encrypting due to performance limitations
- 6. Hash (**sha512**) the filenames and encrypt the file that contains the map between the salted hashes and the filenames

Cryptopuck decryption

- Use safely stored secret key to RSA decrypt the secret found on the flash drive
- Use the decrypted secret to AES-256 decrypt the map containing the file structure
- Decrypt the rest of the files while restoring the file structure

Use cases

- Reporter or spy in a war zone who just collected sensitive data
 - Private key held by the employer or agency, therefore unable to decrypt data
- Developer that needs to send a transfer or ship a physical disk with proprietary information to a remote site or a customer
 - Private key held by the receiver. If someone needs to transfer data to Bob, then just connect your disk to Bob's Cryptopuck.
- Going through TSA airport control without wanting to disclose personal information
- Any other situation where you need **discretely** to encrypt **removable** media **on the fly**

imer Ca

This is a hobby project!

Do **not** use it if your
freedom/industrial secrets> depends on it

Ideas for improvement

- Use a stronger computer or FPGA instead of RPi Zero
- Design better case
- Design PCB to mount all the components
- Create a Yocto image instead of manually configuring Raspbian

FAQ

- Why not encrypt the entire volume?
 - Raspberry Pi Zero is too slow for that
 - Encrypted volume (e.g. LUKS) would not be read out of the box across operating systems
- Why don't you ZIP the files before encrypting them so not to expose metadata?
 - o Raspberry Pi Zero is too slow for that
- Traces may remain despite removing the clear-text files
 - Accept it as a trade-off, since overwriting unused space with random data would slow things down a lot and would not necessarily guarantee complete removal of traces due to wear leveling of flash devices
- What happens if they confiscate my Cryptopuck?
 - Nothing much. They will still not be able to decrypt your files. However, you probably should not use it again as they might have tampered with it.

Questions?

GitHub repo:

https://github.com/platisd/cryptopuck

Demo video

