
Cryptopuck
Encrypt your flash drives on the fly



About me Dimitrios Platis

● Grew up in Rodos, Greece
● Software Engineer @ Cellink, Gothenburg
● Course responsible @ DIT112, GU
● Interests:

○ Embedded systems
○ Software Architecture
○ API Design
○ Open source software & hardware
○ Robots, Portable gadgets, IoT
○ 3D printing

● Blog: https://platis.solutions/blog

https://platis.solutions/blog


What is it?

● Portable device to encrypt 
your removable media

● Easy to use
● Plug & play
● Secure*

* To the extent a non-audited project using 
hobby-grade components can be



How to use

1. Turn on
2. Wait until LED is on
3. Plug in flash-drive
4. Wait until LED stops 

blinking
5. ??????
6. Profit (your drive is 

encrypted)

http://www.youtube.com/watch?v=TeHVPPwr0Yk


Why did I 
make it?

● "Dumbed down" encryption for everyone
● Should be cheap
● OS-agnostic
● Should be able to carry in pocket
● Inspired by encryptable SD card from Zifra

○ Discovered them during Foss-North 2017
● Wanted to learn more about practical 

cryptography

https://www.youtube.com/watch?v=hiRxlZXx_pY


What is it made of?

● Raspberry Pi Zero
● 3D printed case
● DC step-up module 

(3.3V to 5V)
● Micro-USB OTG cable
● 1400mAh Li-Po 

battery
● On/Off switch
● 5mm LED
● 220Ω resistor



How does it 
work?

Crypto 101:
Symmetric 
encryption

● Overview
○ Same secret (e.g. mnemonic password) used to 

both encrypt and decrypt information
○ Must be securely stored

● Advantages
○ Simple, effective & fast

● Disadvantages
○ Has to be shared securely for a different party to 

decrypt
○ One cannot (plausibly) deny the ability to decrypt 

data, e.g.: if someone puts a gun on your head 
and you know the secret, you may be coerced to 
give it up)



How does it 
work?

Crypto 101:
Asymmetric 
encryption

● Overview
○ Two keys, one for decryption ("secret key") and 

one for encryption ("public key")
○ Only the "secret key" must be securely stored

● Advantages
○ No need to share secrets in order to decrypt 

information
○ Can plausibly deny the ability to decrypt 

information since the secret key does not have 
to be in your possession (e.g. can be controlled 
by your employer)

● Disadvantages
○ Slow & inefficient especially for (large) files



Best of all worst 
of none
- Master Ken

1. Encrypt fast without having to share secrets
2. Produce a random secret
3. Symmetrically encrypt the data
4. Asymmetrically encrypt the secret
5. Share the asymmetrically encrypted key and 

symmetrically encrypted data (possibly over 
unsecured channels)

6. Decrypt the secret
7. Use decrypted secret to decrypt data

https://www.youtube.com/watch?v=vrkSf1NO5NA


How does it 
work?

- Cryptopuck 
encryption

1. Automount flash drive using udiskie
2. Get a callback when new drive is mounted via inotify
3. Generate random 32-bit secret using /dev/hwrng which 

will be used to AES-256 encrypt the drive
4. Use public key on flash drive to RSA encrypt (according 

to PKCS#1 OAEP) the secret and save it on the drive
5. Recursively encrypt (AES CBC mode) all files individually

a. Avoid zipping everything and then encrypting due to 
performance limitations

6. Hash (sha512) the filenames and encrypt the file that 
contains the map between the salted hashes and the 
filenames

https://github.com/coldfix/udiskie
https://github.com/seb-m/pyinotify


How does it 
work?

- Cryptopuck 
decryption

1. Use safely stored secret key to RSA decrypt the secret 
found on the flash drive

2. Use the decrypted secret to AES-256 decrypt the map 
containing the file structure

3. Decrypt the rest of the files while restoring the file 
structure



Use cases ● Reporter or spy in a war zone who just collected 
sensitive data

○ Private key held by the employer or agency, 
therefore unable to decrypt data

● Developer that needs to send a transfer or ship a 
physical disk with proprietary information to a 
remote site or a customer

○ Private key held by the receiver. If someone needs 
to transfer data to Bob, then just connect your disk 
to Bob's Cryptopuck.

● Going through TSA airport control without 
wanting to disclose personal information

● Any other situation where you need discretely to 
encrypt removable media on the fly



Di
sc

la
im

er
This is a hobby project!

Do not use it if your 
<life/freedom/industrial secrets> 

depends on it



Ideas for 
improvement

● Use a stronger computer or FPGA instead of RPi Zero
● Design better case
● Design PCB to mount all the components
● Create a Yocto image instead of manually configuring Raspbian



FAQ ● Why not encrypt the entire volume?
○ Raspberry Pi Zero is too slow for that
○ Encrypted volume (e.g. LUKS) would not be read out of the 

box across operating systems
● Why don't you ZIP the files before encrypting them so 

not to expose metadata?
○ Raspberry Pi Zero is too slow for that

● Traces may remain despite removing the clear-text files
○ Accept it as a trade-off, since overwriting unused space 

with random data would slow things down a lot and would 
not necessarily guarantee complete removal of traces due 
to wear leveling of flash devices

● What happens if they confiscate my Cryptopuck?
○ Nothing much. They will still not be able to decrypt your 

files. However, you probably should not use it again as they 
might have tampered with it.



Questions?
GitHub repo: 

https://github.com/platisd/cryptopuck

https://github.com/platisd/cryptopuck


Demo video

http://www.youtube.com/watch?v=A1yopv8Kl34

